#Claude Opus
Claude Opus 4.6 天價發佈、DeepSeek 的物理極限、下周宏觀避險指南
今天忙著體驗Opus 4.6,文章寫的有點晚了,真的太有意思了,就是真的太貴了!!!尤其是今天出的這個Claude Opus 4.6的急速模式(Fast mode),那更是一個貴字了得,反正我是沒敢用。這個急速模式和Opus 4.6性能一致,但速度達到了正常模式下的2.5 倍!更離譜的是價格較Opus 4.6翻了6倍!!!6倍價格換2.5倍速度,從純數學角度看,這筆帳確實不太划算。但商業世界從來不是純數學,對於業餘碼農來說可能不影響什麼。但是對於一個正在緊急修複線上事故的工程師來說,每多等10秒鐘,都意味著更多的使用者流失和更大的業務損失。對於用Claude Code快速迭代產品原型的獨立開發者來說,省下的時間可以直接換算成更早的上線日期。“Anthropic將Fast Mode定義為一次早期的市場實驗。其核心意圖在於探索:在模型‘智力’競爭已趨於白熱化(甚至觸及天花板)的當下,‘速度’這一新維度,究竟能支撐起多大的商業想像空間。”開放模型運行速度提升2.5 倍,成本卻高出6 倍較小的批處理規模。Deepseek 的帕累托最優曲線(解讀:在多個目標互相衝突時,你能達到的“物理極限邊界”)呈現如下狀態:Claude Opus 4.6 版本為 100 Tok/s/使用者Deepseek 在 100 時為 6 千 Tok/s/GPU以每秒 250tok/使用者計算,實際接近 1k。什麼是 100 tok/s?(使用者體驗層)這是一個衡量標準。100 tok/s/使用者 意味著使用者在螢幕上看到文字生成的速度是每秒 100 個 token(約 70-80 個漢字)。對人類閱讀來說,這個速度極快,體驗非常好(幾乎不需要等待)。2. GPU 吞吐量對比(成本效率層)當兩家模型都強制要求達到這個“絲滑速度”時,效率差異就體現出來了:為什麼Claude Opus和DeepSeek差這麼多仍然要發佈?從某種意義上說,這是在‘AI通膨’背景下的一次關鍵試探。當前,AI通膨在成本端已十分顯著(如雲端H100算力價格的飆升),這種壓力正逐漸向下游傳導。關鍵在於,這種漲價能否像Claude一樣最終由終端使用者買單(即使用者願意支付更高的Token費用)。如果這一步走通了,AI Agent(智能體)的商業邏輯將徹底理順:行業將從單純依賴Capex(資本支出)的‘軍備競賽’,轉向具備真實造血能力的商業閉環。這才是對市場質疑最有力的回應。昨天說今天要聊宏觀,玩AI玩過頭了。宏觀就是一句話,風險是否正在醞釀?簡單說一些關鍵,雖然上周各大類資產(如大宗商品、外匯)的波動率已經開始抬頭,但利率市場的波動率依然被壓制在較低水平 。這種背離現象背後的邏輯是:市場對宏觀經濟“軟著陸”的基本共識尚未動搖,但對單一資料點的敏感度正在急劇上升 。退一步來看,“雖然宏觀大背景未變——美國經濟增長向好、通膨態勢緩和,但風險依然存在。鑑於當前就業增長已顯疲態,一旦勞動力市場進一步放緩,此前的樂觀預期將面臨考驗。目前,市場焦點已鎖定下周的非農就業資料,以判斷利率波動率是否會再度抬頭。”美國:就業資料成為市場波動的總開關美國市場目前處於高度緊繃狀態。儘管整體增長前景依然具有支撐性,通膨也在降溫,但本周疲軟的職位空缺和初請失業金資料打破了平靜,成為了避險情緒的催化劑 。市場對下周非農就業資料的敏感度已顯著提升 。這成為了決定後續行情的關鍵分水嶺:風險情景:如果失業率出現反彈跡象,意味著勞動力市場未能走穩,那麼被壓抑的利率波動率將瞬間爆發,市場將劇烈震盪 。基準情景:如果失業率保持穩定或小幅下降,聯準會將繼續維持“觀望”模式,這將有助於穩定前端利率,讓市場重回平靜 。宏觀先聊到這,下周主要的宏觀資料大家心裡有數即可,明天有時間再聊,我又要去幹Opus 4.6了,真的很多想法需要他去實現!今夜註定是不眠夜。 (北向牧風)
Claude Opus 4.6殺死程式設計比賽!挖出500個day0漏洞,生成k線成交量分佈,還有PPT直出
凌晨突襲,Opus 4.6多場景性能領先GPT-5.2。智東西2月6日報導,今天凌晨,Anthropic正式發佈旗艦模型Claude Opus 4.6,是Anthropic首款開啟100萬token上下文窗口測試功能的旗艦級模型。Opus 4.6具備更縝密的規劃能力,能維持更長時間的智能體任務執行,可以在龐大程式碼庫中穩定運行,並能夠進行自我糾錯。在基準測試中,Opus 4.6在智能體程式設計評估Terminal-Bench 2.0中獲得最高分,於綜合性多學科推理測試Humanity's Last Exam中也坐穩了第一名的寶座。針對金融、法律等經濟價值領域的GDPval-AA評估中,Opus 4.6也是第一,並較第二名的GPT-5.2拉開約144個Elo分差,較前代版本Claude Opus 4.5提升了190分。就在Opus 4.6發佈後幾分鐘,OpenAI把GPT-5.3-Codex也搬了出來“正面硬剛”。截至台北時間2月6日11點,X平台上有關“Claude VS Codex”的話題下已有4.1萬條討論。Varick Agent的CEO“vas”發帖稱:“Claude 4.6 Opus僅用一次呼叫就重構了我的整個程式碼庫。25次工具呼叫,新增3000多行程式碼,建立了12個全新檔案。它模組化了所有內容,拆解了單體架構,理順了混亂的邏輯。結果沒一個能運行,但重構後的程式碼,實在是美得驚人。”有網友展示出他用Opus 4.6一次性做出的k線成交量分佈表。評論區紛紛感嘆:這要是真的,那一切都結束了。在話題討論中,有不少網友都自發測評了Opus 4.6與GPT-5.3 Codex這兩款模型,還曬出了測試Agent在複雜現實世界任務中的表現的Terminal-Bench,結果顯示GPT-5.3 Codex比Opus 4.6領先了11.9%。在網友的測評中,在程式設計方面GPT-5.3 Codex獲得的好評似乎更多。有網友發出對比:“Opus 4.6有100萬上下文+企業/知識工作+發現500個零日漏洞+Claude程式碼中的Agent叢集-基準測試成績不如Codex 5.3;而gpt-5.3-codex有程式碼基準測試勝出+速度更快+任務中轉向,但上下文窗口不到Opus的一半。”還有網友放出了更直觀的性能對比圖:價格上,在200K上下文以內(包括200K),Opus 4.6輸入每百萬token的價格為5美元(約合人民幣34.69元),輸出每百萬token的價格為25美元(約合人民幣173.45元);超過200K上下文,Opus 4.6輸入每百萬token的價格為10美元(約合人民幣69.38元),輸出每百萬token的價格為37.5美元(約合人民幣260.18元)。此外,Anthropic還將向Pro與Max使用者限時贈送價值50美元(約合人民幣346.9元)的額外使用額度,不適用於Team版、企業版及API/控制台使用者。使用額外額度的使用者需同時滿足以下兩個條件:1、已於2026年2月4日(太平洋時間)晚11:59前開通Pro或Max訂閱;2、在2026年2月16日(太平洋時間)晚11:59前啟用額外用量功能。Claude Opus 4.6即日起在claude.ai官網、API介面及所有主流雲平台同步上線。開發者可通過Claude API呼叫claude-opus-4-6模型。01. “大海撈針”測試得分76% 緩解“上下文衰減”問題在多語言程式設計測試SWE-bench Multilingual中,Opus 4.6的成績較Opus 4.5提升1.6分;在網路安全漏洞復現測試CyberGym中,Opus 4.6獲得66.6分,較Opus 4.5提升15.6分,是Sonnet 4.5分數的兩倍多。Opus 4.6在長文字連貫性測試Vending-Bench 2中以 8017.59 的分數大幅領先,在計算生物學BioPipelineBench測試中也以53.1分的成績位居第一。Opus 4.6在從海量文件中檢索相關資訊方面能力較上一代有所提升。這一優勢延伸至長上下文任務,它能在處理數十萬token時更穩定地保持和追蹤資訊,減少資訊漂移,並能捕捉到可能遺漏的深層細節。Anthropic團隊在部落格中稱,使用者常抱怨AI模型存在“上下文衰減”問題——即對話超過一定token數量後性能會下降。對此,研究團隊對Opus 4.6進行了MRCR v2的“8針-100萬”變體測試,這是類似於一種在浩瀚文字中檢索隱藏資訊的“大海撈針”式基準測試。在這個測試中Opus 4.6得分達76%,而Sonnet 4.5僅得18.5%。Opus 4.6的綜合基準測試如下圖所示。總而言之,Opus 4.6在長上下文中尋找資訊更精準,吸收資訊後的推理能力更強。02. 行為失范率極低 新增六類網路安全探測工具智能水平的飛躍並未以犧牲安全性為代價。在Anthropic的自動化行為審計中,Opus 4.6的行為失范率極低,行為失范包括欺騙、奉承、助長使用者妄想以及配合濫用等情形。其安全對齊程度與前代旗艦模型,即迄今為止對齊度最高的Claude Opus 4.5保持同等水準。值得注意的是,Opus 4.6在所有近期Claude模型中展現出最低的過度拒絕率,即模型未能回應良性查詢的情況。在部落格中,Anthropic團隊透露,針對Opus 4.6,他們開展了迄今最全面的安全評估體系,首次應用多項全新測試方法並對既有評估方案進行升級。Anthropic團隊新增了使用者福祉評估、更複雜的危險請求拒答能力測試,並更新了模型隱蔽執行有害行為的評估標準。同時,其運用可解釋性科學的新方法進行實驗,開始探究模型特定行為背後的成因,以期發現標準測試可能遺漏的問題。針對Opus 4.6在特定領域可能被危險利用的突出能力,研究團隊同步部署了新的防護機制。尤其鑑於該模型顯著增強的網路安全能力,他們開發了6種新型網路安全探測工具以幫助追蹤不同形式的潛在濫用行為。同時,Anthropic也在加速推進Opus 4.6在網路防禦領域的應用,通過其協助發現並修復開放原始碼軟體漏洞。他們認為網路防禦者利用Claude這類AI模型來平衡攻防態勢至關重要。網路安全領域發展迅速,Anthropic將根據對潛在威脅的認知持續調整和更新防護措施,近期其可能啟動即時干預機制以阻斷濫用行為。03. API新增自適應思考功能 Claude Code現可多智能體平行通過API介面,開發者們還可以獲取到更精細的模型算力控制方案,並為長期運行的智能體任務帶來更高靈活性。具體新增以下功能:1、自適應思考:此前開發者僅能在啟用或停用深度思考模式間二選一。現在通過自適應思考功能,Claude可自主判斷何時需要深度推理。在默認算力等級(高)下,模型會在必要時啟動深度思考,開發者也可通過調整算力等級來改變其觸發頻率。2、算力調控:現提供四個可調節的算力等級:低、中、高(默認)、極致。3、上下文壓縮(測試版):長程對話與智能體任務常觸及上下文窗口限制。當對話接近可配置閾值時,上下文壓縮功能將自動總結並替換早期對話內容,使Claude能夠執行更長任務而不受限制。4、100萬token上下文(測試版):當提示內容超過20萬token時,將適用高級定價。5、128k輸出token:Opus 4.6支援最高128k token的輸出長度,使Claude能完整處理需要大規模輸出的任務,無需拆分為多次請求。6、美國境內推理:對於需要在美國境內運行的工作負載,可選擇美國專屬推理服務,定價為標準token費用的1.1倍。在Claude與Claude Code平台,Anthropic新增了多項功能:Claude Code中新增智能體團隊的研究預覽功能。現在使用者可以啟動多個平行工作的智能體,它們將自主協同配合,特別適用於程式碼庫審查這類可拆分為獨立、重讀取的子任務。在與常用辦公工具的協作體驗方面,Claude Excel整合版現在能夠處理長時程與高難度任務,支援先規劃後執行、自主解析非結構化資料並推斷正確格式,還能單次完成多步驟修改。Excel整合版還能搭配PowerPoint整合版使用,使用者可先在Excel中處理並結構化資料,再通過PowerPoint實現可視化呈現。PowerPoint整合功能現已面向Max、Team及企業版使用者開放研究預覽。04. 放手兩千次會話 智能體團隊“煉”出十萬行C編譯器Anthropic官方還給出了一個開發者使用平行Claude智能體團隊建構C語言編譯器的案例。在這個案例中,開發者指派Opus 4.6率領智能體團隊建構一個C語言編譯器,隨後便基本放手任其運行,僅用兩周,就完成了一個小團隊一個月的工作。在為期兩周、近2000次Claude Code會話中,Opus 4.6消耗了20億個輸入token並生成1.4億個輸出token,總成本略低於2萬美元(約合人民幣13.88萬元),這個成本僅相當於開發者個人獨立完成所需投入的零頭。最終Opus 4.6做出了一個有著10萬行程式碼規模的編譯器,並且是淨室實現,即開發全程Claude無網路存取權,僅依賴Rust標準庫。這個編譯器能在x86、ARM和RISC-V架構上建構可啟動的Linux 6.9核心,還能編譯QEMU、FFmpeg、SQLite、PostgreSQL、Redis等大型項目。該編譯器在包括GCC torture測試套件在內的大多數編譯器測試中達到99%通過率,甚至通過了編譯器、作業系統等底層技術的 “終極測試”:成功編譯並運行第一人稱射擊遊戲《Doom》。經過多輪實踐,開發者總結出了協調多個Claude高效協作的四大核心方法:1、改進測試框架:在項目後期,Claude每次實現新功能時都會頻繁破壞現有功能。為此開發者建構了持續整合流水線,實施更嚴格的檢查機制,讓Claude能更好地測試自身工作,確保新提交不會破壞現有程式碼。2、站在Claude的視角設計適配環境:每個智能體都啟動於無上下文的新容器中,會花費大量時間自我定位,尤其在大型項目中。甚至在運行測試前,為幫助Claude自助,開發者需要在說明中要求維護詳細的README文件和進度檔案,並需頻繁更新當前狀態。3、簡化平行機制:當存在多個獨立失敗的測試時,平行化輕而易舉,但當智能體開始編譯Linux核心時卻陷入困境。與包含數百個獨立測試的套件不同,編譯Linux核心是單項巨型任務,所有智能體都會遇到相同的bug,修復後卻互相覆蓋修改,運行16個智能體也不行,因為它們都卡在解決同一問題上。為此,開發者編寫了新測試框架,將GCC作為線上驗證編譯器進行比對。這讓每個智能體都能平行工作,在不同檔案中修復不同bug,直至Claude的編譯器最終能編譯所有檔案。4、多元智能體角色分工:LLM編寫的程式碼常重複實現現有功能,因此開發者指派了一個智能體專門合併發現的重複程式碼。另一個負責最佳化編譯器本身的性能,第三個則專攻輸出高效的編譯程式碼,還讓一個智能體以Rust開發者視角批判項目設計並進行結構性改進,另設智能體專注文件工作。開發者稱,該成果已經逼近Opus的能力邊界,但仍有需要提升的方面:1、16位x86編譯器缺失:缺乏從真實模式啟動Linux必需的16位x86編譯器,該環節需呼叫GCC(x86_32和x86_64編譯器為自主實現);2、彙編器與連結器不完善:這兩部分是Claude最後開始自動化的模組,目前仍存在較多缺陷。演示視訊中使用的是GCC彙編器與連結器;3、相容性未達全替代標準:雖能成功建構眾多項目,但尚不能完全替代真實編譯器;4、程式碼生成效率偏低:即使啟用所有最佳化選項,其輸出程式碼效率仍低於停用最佳化的GCC;5、Rust程式碼質量有限:程式碼質量尚可,但遠未達到專業Rust程式設計師的水準。05. 結語:Anthropic在安全性上下了狠功夫Opus 4.6在長上下文理解、複雜推理與智能體協作等方面的性能提升,為企業級高密度、長周期任務提供了新的解決方案。同時,在Anthropic的部落格中,他們用了很大篇幅來寫新模型的安全性。Anthropic通過增強安全評估體系與部署主動防護機制,展現出對AI風險治理的前置性投入。 (智東西)
一個介面測了 N 個模型,DeepSeek V3.2 把我的頭給想禿了。。。
DeepSeek-V3.2 突然發佈,那參數強得離譜……基本上把 GPT-5 都按在地上摩擦了。圖:國外網友瘋狂研究 DeepSeek 3.2累不累啊?Benchmark 資料直接拉滿,而成本更是暴擊一堆海外頂尖模型。價格只有 GPT-5 的約 20%,輸出 Token 甚至只有它的 1/24。圖:DeepSeek  V3.2 參數大家都嗨了。而且這玩意還完美適配 Claude 生態,只需要改名成“deepdeek-reasoner”就好了。作為一個有“模型收集癖”的老玩家,我當時的反應和大家一樣:“扶我起來,我要測它!”但剛坐到電腦前,我就萎了。01| 以前測模型的“勸退”流程你們有沒有算過,以前我們要想對比測試幾個模型,得掉多少根頭髮?想測 DeepSeek?去官網。想測 Claude?去外網。想測阿里通義?去阿里雲。每個平台都得註冊帳號,綁手機,填發票資訊,還得先充值(那怕我只測幾毛錢)。最崩潰的來了。每家的 API 文件都長得不一樣!這家的參數叫 max_tokens,那家非要叫 max_output_tokens。為了相容這堆亂七八糟的介面,我得寫一堆 if-else 的“屎山程式碼”。圖:傳統的模型使用流程我就想簡單的問一句:“DeepSeek V3.2 和Claude Opus 4.5 到底誰寫程式碼更好?”結果這還沒開始測,我已經被“配環境”給勸退了。02|降維打擊:一個介面,通吃所有我實在不想再這麼折騰了,還好有朋友給我推薦了一個神器。它把市面上幾乎所有叫得上名字的頂尖模型(DeepSeek-V3.2、Opus 4.5、Gemini 3 Pro...),全部封裝成了一個標準的 OpenAI 相容介面。市面上做模型中轉的工具不少,但能以雲廠商的底座做到如此絲滑封裝的,還真不多。這就是七牛雲。它不僅僅是省事,這是玩法的降維打擊。這意味著,在我的視角裡,DeepSeek 和 Claude 不再是兩個需要分別配置的龐然大物,它們只是兩個不同的“字串名字”而已。我要做的,就是配置一次七牛雲的 Key。然後? 然後我就擁有了整個 AI 世界。03| 極致偷懶:Vibe Coding 實現“模型自由”既然介面統一了,我甚至連程式碼都懶得自己寫了。我打開了 Google AI Studio,然後開啟了 Vibe Coding(氛圍感程式設計) 模式。不到 10 分鐘,我擼了一個模型競技場出來:圖:模型競技場我一口氣把市面上的主流模型全擼了進來,想測那個測那個。這感覺,太 tm 爽啦!放在程式碼裡也一樣,以前我的程式碼(一堆亂七八糟的 import):import openaiimport anthropic# 此處省略50行噁心的配置程式碼現在我的程式碼:只需要改 model 參數,其他全都不用動client = QiniuAI(api_key="...")# 1. 遇到難題?切 CEO 帳號response = client.chat(model="deepseek-v3.2", messages=complex_task)# 2. 髒活累活?切 牛馬 帳號response = client.chat(model="qwen-turbo", messages=format_task)這就很舒服了。下次有新的模型一上,我不需要改邏輯,改個字串就能無縫升級。比如我突發奇想寫一個賽博朋克風的俄羅斯方塊,DeepSeek V3.2 Speciale 號稱宇宙無敵,先拿它來試試。結果它整整思考了 453 秒....圖:DeepSeek V 3.2 Speciale 思考時間很長然後寫了這玩意。。。圖:DeepSeek V3.2 Speciale 生成的遊戲接著我再試試 Gemini 3 Pro,我只需要在這裡換個模型名字就可以了。這回它不到 2 分鐘就完成了,快到飛起。圖:模型競技場中選擇模型而且這個效果也是碾壓啊。。 所以,模型好不好,不要光看跑分,實際跑一下吧。。。圖:Gemini 3 Pro 生成的遊戲整個過程非常絲滑,畢竟他們是做雲的,這速度非常流暢,不管模型在那,延遲都很低。但不得不說,DeepSeek V3.2 這個最牛逼的模型(Speciale),也是真的慢。04 最後的碎碎念:小孩子才做選擇這個模型競技場對我這種博主來說,太有用了。在這個“三天一個新模型”的瘋狂時代,效率就是生命。我是真的不想再把時間浪費在註冊帳號和配環境上了。很多人問我到底那個模型好?說實話這個問題沒有答案,模型各有千秋,我也會同時使用多個模型。下一步我還想做一件事兒,就是把多個模型放在一塊組成一個委員會,就是所謂的 LLM Council。圖:設想中的 LLM Council這也是有了七牛雲這個“萬能插座”後才能實現的玩法。你想想,每次你問一個問題,背後是一整個“復仇者聯盟”在給你出謀劃策。這才是 AI 正確的打開方式。小孩子才做選擇,成年人當然是全都要! (AI范兒)
終結OpenAI壟斷的11人
【新智元導讀】估值飆升至3500億美元,Claude Opus 4.5強勢登頂企業級市場,Anthropic正式終結了OpenAI的獨角戲時代。從Instagram創始人到OpenAI的「決裂者」,這11位頂尖人物組成了矽谷最豪華的「復仇者聯盟」。他們用一場驚天逆襲證明,在通往AGI的狂飆突進中,對安全的極致堅守才是最深的護城河。如果你在2021年走進Anthropic的辦公室,看到的只是一群從OpenAI「叛逃」出來的理想主義者;但如果你今天再看Anthropic的高管名單,你會發現這已經不再是一個簡單的實驗室,而是一支足以撼動矽谷版圖的「全明星復仇者聯盟」。隨著Anthropic的估值在本月飆升至驚人的3500億美元,Claude Opus 4.5更是拿下了企業級市場32%的份額。在這個龐大的數字帝國背後,是11個性格迥異、背景傳奇的掌舵者。他們有人曾一手打造了Instagram,有人曾是OpenAI最核心的大腦,有人則是守護過Netflix全球資料的守夜人。這是一份關於信仰、決裂與重塑的名單。權力的雙核:兄妹與決裂故事的起點始終是Dario Amodei(CEO)。這位前Google科學家和OpenAI研究副總裁,在四年前做出了一個震驚業界的決定:帶著六名親信出走。原因很簡單,他無法接受老東家在安全問題上的激進。Dario是那種典型的「技術苦行僧」,他拒絕了OpenAI的併購提議,堅守獨立研究。而站在Dario身旁的,是他的親姐姐Daniela Amodei(總裁)。哥哥仰望星空,妹妹腳踏實地。Daniela有著極罕見的履歷:從政治競選的泥潭中摸爬滾打,轉型為Stripe的風控經理,再到OpenAI的安全副總裁。在Anthropic,她是那個能讓理想主義落地的人,直接管理著包括CTO在內的核心高管,確保這家公司的骨架不會被飛速增長的肌肉壓垮。矽谷頂流的跨界當「濾鏡」遇上「大腦」最令人意想不到的加盟者,無疑是Mike Krieger(首席產品官)。作為Instagram的聯合創始人,他曾定義了全球數億人的視覺語言。在將自己的新聞應用Artifact賣給雅虎僅一個月後,他就閃電加入了Anthropic。Krieger的到來是一個強烈的訊號:Claude不想只做工程師的玩具。這位擁有極致產品嗅覺的產品天才,正準備把冷冰冰的模型變成人人愛用的國民級產品。同樣來自頂級商業戰場的還有Rahul Patil(CTO)。兩個月前,他剛從支付巨頭Stripe的CTO位置上卸任。在微軟、亞馬遜和甲骨文歷練多年的他,深諳如何駕馭龐大的工程系統。如今,他接過了指揮棒,掌管著這家AI巨頭所有的工程命脈。「叛逃者」聯盟:為了即使機器不失控在技術核心圈,Anthropic幾乎匯聚了「反叛軍」的精華。Jan Leike(對齊科學負責人)的名字本身就是一面旗幟。他曾是OpenAI「超級對齊」團隊的聯席主管,卻因絕望於前東家對安全的忽視而憤然離職。他的名言「為後AGI時代的人類繁榮而最佳化」,在Anthropic找到了真正的共鳴。在這裡,他不再是孤獨的守望者,而是掌舵者。Jared Kaplan(首席科學官)則是一位理論物理學家出身的「第一性原理」信徒。作為約翰霍普金斯大學的教授,他用量子場論的思維去解構神經網路,為公司確立了長期的科研航向。Tom Brown(首席計算官)曾是GPT-3的幕後締造者。這位自學成才的工程天才,如今正在指揮一場被YCombinator稱為「人類歷史上最大規模的基礎設施建設」。他的任務簡單而艱巨,為甚至還沒誕生的ASI打好地基。Sam McCandlish(首席架構師),另一位擁有史丹佛理論物理博士學位的初創元老。他的論文引用量超過10萬次,但他並沒有留在象牙塔裡,而是從CTO轉型為架構師,專注於那些最硬核的模型訓練難題。守夜人與布道者在這個充滿了不確定性的時代,安全感是最大的奢侈品。Vitaly Gudanets(首席資訊安全官)曾在Netflix全球擴張期間守護其資料安全。作為Lightspeed的營運合夥人,他看慣了科技圈的起起落落。今年9月,他選擇站到Anthropic的城牆上,為這艘巨輪抵禦來自網路世界的暗箭。Jack Clark(政策負責人)則有著最獨特的視角。他從彭博社的一名科技記者起家,寫出了著名的Import AI通訊,最終轉型為OpenAI的政策總監並隨後聯合創立了Anthropic。他是這個極客團隊對外的窗口,遊走在各國政府與國際組織之間,試圖為AI制定規則。Krishna Rao(CFO),這位曾在Airbnb和Fanatics掌管財務戰略的高管,正在為Anthropic繪製一張通往兆市值的藏寶圖。這11個人,有的來自象牙塔,有的來自名利場;有的為了逃離危險,有的為了追尋真相。他們聚在一起,相信人類的理性可以駕馭自己創造的神蹟。在這個瘋狂加速的時代,或許只有這群曾見過深淵、並對其心存敬畏的人,才配握緊那把通往未來的鑰匙。 (新智元)
突發!Claude Opus 4.5程式設計世界第一,把GoogleOpenAI踢下王座
【新智元導讀】深夜,Claude Opus 4.5重磅出世,程式設計實力暴擊Gemini 3 Pro、GPT-5.1。才一周的時間,AI圈就完成了一次閉環式迭代。全球編碼王座,一夜易主。果不其然,Anthropic深夜放出了Claude Opus 4.5,堪稱全球最頂尖的模型。它不僅程式設計強,而且智能體和電腦使用(computer use)能力也是一流。Opus 4.5的誕生,標誌著AI能力再一次飛躍,更將在未來徹底變革工作的方式。基準測試中,Opus 4.5的編碼、工具呼叫、電腦使用的成績刷新SOTA,比Sonnet 4.5、Opus 4.1領先一大截。不僅如此,就連發佈不過一周的Gemini 3 Pro、GPT-5.1慘遭降維打擊。SWE-bench Verified一張圖,直接證明了Opus 4.5強大實力,80.9%的精準率,世界第一。同時,在ARC-AGI-2評估中,Opus 4.5(64k)拿下了37.6%的高分。Opus 4.5這版厲害之處:在無需人工干預的情況下,就能處理模糊資訊,還會權衡利弊。即便是遇到複雜的多系統漏洞,也能夠找出修複方法。總之,用起來就一個感覺——「一點就透」。內部評估中,Opus 4.5+Claude Code聯動使用,平均生產效率暴增220%。目前,Opus 4.5已在APP、Claude API和三大主流雲平台中上線。價格方面,相較以往暴降不少,輸入5美元/百萬token,輸出25美元/百萬token。Gemini 3 Pro干翻了GPT-5.1,但如今,就編碼性能,Opus 4.5全面碾壓前兩者。不過一周的時間,AI圈真正閉環了。程式設計之王回歸,真SOTA有一說一,Claude Opus 4.5是地表最強程式設計模型。它智能、高效,是目前全球在程式設計、AI智能體(Agents)以及電腦操作方面最強悍的模型。Anthropic研究員Adam Wolff豪言,也就在明年上半年,軟體工程徹底終結了。在深度研究、處理PPT和電子表格等日常任務上,它也有顯著提升。在真實場景的軟體工程測試中,Claude Opus 4.5更是刷新SOTA:在SWE-bench Verified上的對比,Opus 4.5得分最高與Opus一同發佈的,還有Claude開發者平台、Claude Code以及消費者端App的更新。Anthropic為長時間運行的智能體提供了新工具,並帶來了在Excel、Chrome和桌面端使用Claude的新方式。在Claude App中,長對話不再會因為上下文限制而中斷。碾壓Gemini 3,超越人類首先,Opus 4.5在視覺、推理和數學能力上均得到了全面提升,並在多個領域達到了業界頂尖水平。尤其是,在編碼、智能體、電腦使用三大項,完勝Gemini 3 Pro、GPT-5.1。其次,在程式碼方面。Opus 4.5編寫的程式碼質量更高,在SWE-bench Multilingual測試的8種程式語言中,它有7種都處於領先地位。Opus 4.5能夠輕鬆解決具有挑戰性的編碼問題,在Aider Polyglot測試中比Sonnet 4.5提升了10.6%。在智能體搜尋任務上,Opus 4.5實現了重大突破,在BrowseComp-Plus基準測試中取得顯著提升。Opus 4.5表現穩定持久,在Vending-Bench基準上整體收益比Sonnet 4.5高出29%.衡量智能體(Agentic)能力的一個通用基準是τ2-bench,它考察智能體在現實世界多輪任務中的表現。在一個場景中,模型需要扮演航空公司客服代理,幫助一位焦急的客戶。基準測試原本期望模型拒絕修改「基本經濟艙」的預訂,因為航空公司規定此類機票不可更改。然而,Opus 4.5找到了一種極具洞察力(且合規)的解決方案:先升級艙位,再修改航班。讓我想想在政策範圍內我有那些選擇:1. 修改航班 - 基本經濟艙不可修改。這一點在政策中寫得很清楚。2. 更改艙位 - 等等,讓我確認一下這個選項!政策上說:「在其他情況下,所有預訂,包括基本經濟艙,都可以在不更改航班的情況下更改艙位。」但他想更改航班,不僅僅是艙位。不過,如果我們:· 先更改艙位(這對基本經濟艙是 允許 的),然後· 再更改航班(這對非基本經濟艙是允許的)所以策略可能是:1. 將他的艙位從基本經濟艙升級為經濟艙(或商務艙)2. 然後將航班修改為 2天後的班次這會花費更多錢,但這在政策範圍內是一條合法的路徑!儘管該基準測試判定此結果為「失敗」(因為Claude的方式超出了預期),但這種創造性的解決問題能力正是測試者和客戶所津津樂道的——這也是Claude Opus 4.5讓人感覺邁出實質性一步的原因。最後,在軟體工程領域。Anthropic通常會給應聘性能工程師的候選人佈置一道出了名難的遠端測試題,用來評估在時間壓力下的技術能力和判斷力。而Claude Opus 4.5則在規定的2小時時限內,得分超過了以往任何一位人類候選人。最穩健、最對齊、最安全正如在系統卡中所述,Claude Opus 4.5是Anthopic迄今為止發佈的最穩健、最對齊(Aligned)的模型。Anthropic認為它也是目前所有AI模型中對齊程度最高的基準模型。它延續了Anthropic向更安全、更可靠模型發展的趨勢:在這項評估中,「令人擔憂的行為」評分涵蓋了廣泛的錯位行為,既包括配合人類進行惡意濫用,也包括模型自主採取的不良行動在抵禦「提示詞注入」(Prompt Injection)攻擊方面,Opus 4.5取得了實質性進展——這種攻擊通常會夾帶欺騙性指令,誘導模型做出有害行為。Opus 4.5比業內任何其他前沿模型都更難被提示詞注入所欺騙:該基準測試僅包含極高強度的提示詞注入攻擊有關Opus4.5所有能力和安全評估的詳細描述,請參閱《Claude Opus 4.5 System Card》。連結:https://assets.anthropic.com/m/64823ba7485345a7/Claude-Opus-4-5-System-Card.pdfClaude Code、Claude for Chrome上新Claude Code這樣的產品展示了當Claude開發者平台的升級整合在一起時能實現什麼。Opus 4.5為Claude Code帶來了兩項升級。「計畫模式」(Plan Mode)現在能建構更精確的計畫並執行得更徹底——Claude會先詢問澄清性問題,然後在執行前生成一個使用者可編輯的plan.md檔案。Claude Code現已登陸桌面端App,支援平行運行多個本地或遠端會話:比如一個智能體在修Bug,另一個在查GitHub資料,第三個在更新文件。對於Claude App使用者,長對話不再會遭遇「碰壁」——Claude會根據需要自動總結之前的上下文,確保聊天持續進行。Claude for Chrome(讓Claude 處理瀏覽器標籤頁任務)現已向所有Max使用者開放。Claude for Excel,從今天起將Beta測試權限擴展至所有Max、Team和Enterprise使用者。每一次更新都充分利用了Claude Opus 4.5在電腦操作、電子表格處理和長任務處理方面的市場領先性能。對於有權訪問Opus 4.5的Claude和Claude Code使用者,Anthropic取消了針對 Opus 的特定限制。對於Max和Team Premium使用者,Anthropic提高了總使用上限,這意味著擁有的Opus Token數量將與此前擁有的 Sonnet Token數量大致相同。這些限制專門針對 Opus 4.5,隨著未來更強模型的推出,限制預計會按需更新。開發者平台:token暴降85%隨著模型變得更聰明,它們能以更少的步驟解決問題:更少的回溯,更少的冗餘探索,更少的囉嗦推理。在達到類似或更好結果時,Claude Opus 4.5的Token數大幅減少。但不同的任務需要不同的權衡。有時開發者希望模型對問題進行深思熟慮,有時則需要它更敏捷。通過Claude API新增的effort(投入度)參數,可以選擇最小化時間與成本,或是最大化能力。設定為「中等」投入度時,Opus 4.5在SWE-bench Verified上的得分與Sonnet 4.5的最高分持平,但輸出Token減少了76%。在「最高」投入度下,Opus 4.5的表現超越Sonnet 4.5達4.3%,同時Token消耗仍減少了48%。憑藉投入度控制、上下文壓縮和高級工具使用,Claude Opus 4.5執行階段間更長,功能更強,且需更少的人工干預。上下文管理和記憶能力可顯著提升智能體任務的性能。Opus 4.5在管理子智能體團隊方面也非常高效,能夠建構複雜、協調良好的多智能體系統。測試顯示,結合所有這些技術,Opus 4.5在深度研究評估中的表現提升了近15%。同在今天,Anthropic在Claude開發者平台上,更新了三大工具使用功能:工具搜尋工具(Tool Search Tool)程序化工具呼叫(Programmatic Tool Calling)工具使用示例(Tool Use Examples)工具搜尋工具首先,「工具搜尋工具」允許Claude使用搜尋工具訪問數千個工具,而無需消耗其上下文窗口。MCP工具定義提供了重要的上下文,但隨著連接的伺服器增多,這些Token的消耗會不斷累積。假設一個包含五個伺服器的設定:GitHub:35個工具(約26KToken)Slack:11個工具(約21KToken)Sentry:5個工具(約3KToken)Grafana:5個工具(約3KToken)Splunk:2個工具(約2KToken)這僅僅是58個工具,在對話開始之前就已經消耗了大約55K Token。如果加入更多像Jira這樣的伺服器(僅它本身就使用約17KToken),很快就會面臨100K+Token的開銷。在Anthropic,團隊曾見過工具定義在最佳化前就消耗了134KToken。但Token成本並不是唯一的問題。最常見的失敗原因還包括錯誤的工具選擇和不正確的參數,尤其是當工具具有相似名稱時,比如notification-send-user與notification-send-channel。想相比之下,工具搜尋工具不再預先載入所有工具定義,而是按需發現工具。Claude只會看到當前任務實際需要的工具。工具搜尋工具保留了191,300 Token的上下文,而傳統方法只有122,800傳統方法:預先載入所有工具定義(50+ MCP工具約消耗72KToken)對話歷史和系統提示詞爭奪剩餘空間總上下文消耗:在任何工作開始前約77K Token使用工具搜尋工具:僅預先載入工具搜尋工具本身(約500Token)根據需要按需發現工具(3-5個相關工具,約3KToken)總上下文消耗:約8.7KToken,保留了95%的上下文這意味著在保持訪問完整工具庫的同時,Token使用量減少了85%。內部測試顯示,在處理大型工具庫時,MCP評估的精準性顯著提高。啟用工具搜尋工具後,Opus 4精準率從49%提高到74%,Opus 4.5從79.5%提高到88.1%。程序化工具呼叫「程序化工具呼叫」允許Claude在程式碼執行環境中呼叫工具,從而減少對模型上下文窗口的佔用。隨著工作流變得更加複雜,傳統的工具呼叫產生了兩個基本問題:中間結果造成的上下文污染推理開銷和手動合成示例:預算合規性檢查比如,一個常見的業務任務:「那些團隊成員超出了他們的Q3差旅預算?」你有三個可用工具:get_team_members(department) - 返回帶有ID和等級的團隊成員列表get_expenses(user_id, quarter) - 返回使用者的費用明細項目get_budget_by_level(level) - 返回員工等級的預算限額傳統方法:獲取團隊成員→20人對於每個人,獲取他們的Q3費用→20次工具呼叫,每次返回50-100個明細項目(機票、酒店、餐飲、收據)按員工等級獲取預算限額所有這些都進入Claude的上下文:2,000+費用明細項目(50 KB+)Claude手動彙總每個人的費用,尋找他們的預算,將費用與預算限額進行比較更多的模型往返互動,顯著的上下文消耗使用程序化工具呼叫:Claude不再接收每個工具的返回結果,而是編寫一個Python指令碼來編排整個工作流。該指令碼在程式碼執行工具(一個沙盒環境)中運行,在需要工具結果時暫停。當通過API返回工具結果時,它們由指令碼處理而不是由模型消耗。指令碼繼續執行,Claude只看到最終輸出。程序化工具呼叫使Claude能夠通過程式碼而不是通過單獨的API往返來編排工具,從而允許平行執行工具。以下是Claude為預算合規性任務編寫的編排程式碼示例:Claude的上下文僅接收最終結果:兩到三個超出預算的人員。2,000+明細項目、中間總和和預算尋找過程不會影響Claude上下文,將消耗從200KB的原始費用資料減少到僅1KB的結果。這種過程,在效率提升巨大:Token節省:通過將中間結果隔離在Claude的上下文之外,程序化工具呼叫(PTC)顯著減少了Token消耗。在複雜研究任務上,平均使用量從43,588降至27,297個Token,減少了37%。降低延遲:每次API往返都需要模型推理(耗時數百毫秒到數秒)。當Claude在單個程式碼塊中編排20+個工具呼叫時,消除了19+次推理過程。API處理工具執行,而無需每次都返回模型。提高精準性:通過編寫顯式的編排邏輯,Claude在處理多個工具結果時比使用自然語言更少出錯。內部知識檢索精準率從25.6%提高到28.5%;GIA基準測試從46.5%提高到51.2%。工具使用示例「工具使用示例」提供了一套通用標準,用於演示如何有效地使用給定工具。當前的挑戰在於,JSON Schema擅長定義結構——類型、必填欄位、允許的列舉值——但它無法表達使用模式:何時包含可選參數,那些組合有意義,或者API期望什麼樣的慣例。考慮一個支援工單API:模式定義了什麼是有效的,但留下了關鍵問題未解答:格式歧義:due_date應該使用"2024-11-06"、"Nov 6, 2024"還是"2024-11-06T00:00:00Z"?ID慣例:reporter.id是UUID、"USR-12345"還是僅僅"12345"?巢狀結構用法:Claude何時應該填充reporter.contact?參數相關性:escalation.level和escalation.sla_hours如何與priority相關聯?這些歧義可能導致畸形的工具呼叫和不一致的參數使用。對此,工具使用示例可以直接在工具定義中提供示例工具呼叫。開發者不再僅依賴模式,而是向Claude展示具體的使用模式:從這三個例子中,Claude學習到:格式慣例: 日期使用YYYY-MM-DD,使用者ID遵循USR-XXXXX,標籤使用kebab-case(短橫線命名)。巢狀結構模式: 如何構造帶有巢狀contact對象的reporter對象。可選參數相關性: 嚴重錯誤(Critical bugs)需要完整的聯絡資訊+帶有嚴格SLA的升級;功能請求有報告者但沒有聯絡資訊/升級;內部任務只有標題。在自內部測試中,工具使用示例在複雜參數處理上的精準性從72%提高到90%。大受好評在發佈前,Anthropic內部對模型進行了測試,反饋出奇一致。測試者指出,在處理模糊指令和權衡利弊時,Claude Opus 4.5無需過多指引。當面對複雜的多系統Bug時,Opus 4.5 能精準定位並修復。幾周前對於Sonnet 4.5來說還近乎不可能的任務,現在已觸手可及。總而言之,測試者的評價是:Opus 4.5是真的「行家」。 (新智元)
大幅降價、無限聊天、編碼能力超越人類專家,Claude Opus 4.5重奪最強模型王冠
11月25日凌晨,Anthropic發佈了其迄今最強大的AI模型Claude Opus 4.5。該公司宣稱,新模型在軟體工程任務上實現了“最先進性能”,進一步加劇了其與OpenAI、Google等對手之間的競爭。Claude Opus 4.5在Anthropic軟體工程測試中表現出色,得分超越Gemini 3 Pro、GPT-5.1等一眾對手。圖:Claude Opus 4.5在SWE Bench軟體工程測試中的性能表現公司資料顯示,該模型在SWE-bench Verified(一項評估現實世界軟體工程能力的基準測試)中達到了80.9%的精準率,表現超越了OpenAI的GPT-5.1-Codex-Max(77.9%)、Anthropic自家的Sonnet 4.5(77.2%)以及Google的Gemini 3 Pro(76.2%)。同時,Anthropic大幅下調了這款模型的定價:輸入token降至每百萬5美元,輸出token為每百萬25美元,較前代產品Claude Opus 4.1(輸入15美元/百萬,輸出75美元/百萬)下降約三分之二。降價使得尖端AI技術對廣大開發者和企業更加觸手可及,同時也給競爭對手帶來了性能與價格的雙重壓力。現實任務中展現更優判斷力測試人員普遍反饋,新模型在各種任務中展現出更強的判斷力與直覺。他們將這種進步描述為:模型開始領悟現實情境中的“關鍵所在”。“這個模型好像突然‘開竅’了,”開發者關係負責人阿爾伯特表示,“它在處理許多現實問題時表現出的直覺和判斷力,讓人感覺相比前代模型實現了一次質的跨越。”阿爾伯特以自身工作為例進一步說明:過去他僅利用AI收集資訊,而對它們的整合與優先順序排序能力持保留態度。如今,借助Opus 4.5,他已開始委託更完整的任務,通過連接Slack和內部文件,模型能生成與他預期高度契合的連貫摘要。賓夕法尼亞大學沃頓商學院教授、生成式AI實驗室聯合主任伊桑·莫利克測試後評論道,新模型的能力確實處於技術前沿。其最顯著的提升在於實際應用,例如跨軟體操作(如用Excel製作PPT)。核心工程測試中超越所有人類工程師Claude Opus 4.5在Anthropic內部一項高難度工程評估中創下了新紀錄。這項評估本是公司為性能工程師崗位設計的限時程式設計測試,要求求職者在兩小時內完成,旨在考察其技術能力與問題判斷力。Anthropic透露,通過採用“平行測試時計算”技術,即彙總模型的多次解題嘗試並篩選最優結果,Opus 4.5的最終得分超越了所有曾參與該測試的人類工程師。在不限時間的條件下,若在其專用編碼環境Claude Code中運行,Claude Opus 4.5的解題表現更是與史上最高分的人類工程師持平。不過該公司也坦言,這類測試無法衡量其他關鍵專業技能,例如團隊協作、有效溝通,或是經年累月形成的專業直覺。核心基準測試token消耗大幅降低76%除原始性能突破外,Anthropic更將效率提升視為Claude Opus 4.5的核心競爭力。新模型在達成相同甚至更優結果時,所需處理的計算token數量顯著減少。具體資料顯示,在“中等”投入等級下,Opus 4.5可在SWE-bench Verified測試中達到與Sonnet 4.5相同的最高分,而輸出token消耗量卻大幅降低了76%。即便在“高”投入等級追求極限性能時,其表現比Sonnet 4.5再提升4.3個百分點,token使用量仍減少了近一半(48%)。為賦予開發者更精細的控制權,Anthropic引入了全新的“投入”參數。使用者可通過此參數,動態調節模型處理每個任務時所投入的計算工作量,從而在性能、響應速度和成本之間找到最佳平衡點。GitHub首席產品官馬里奧·羅德里格斯也證實了類似發現:“早期測試表明,Opus 4.5在token消耗減半的同時,性能仍超越了我們的內部編碼基準,尤其在程式碼遷移與重構等複雜任務上表現尤為出色。”阿爾伯特對此現象作出技術解讀:Claude Opus 4.5並非直接更新其底層參數,而是在持續最佳化解決問題的工具與方法。“我們看到它在迭代精進任務技能,通過自主最佳化執行方式來提升最終效果,”他解釋道。這種自我進化能力已突破程式設計領域。阿爾伯特透露,在專業文件生成、電子表格處理和簡報製作等場景中,模型表現均有顯著提升。深度整合Office突破上下文長度限制伴隨新模型的發佈,Anthropic同步推出了一系列面向企業場景的重要更新。專為Excel設計的Claude功能現已向Max、Team及Enterprise使用者全面開放,新增了對資料透視表、可視化圖表及檔案上傳的完整支援。同時,Chrome瀏覽器擴充套件也已向全體Max使用者開放使用。本次更新最具革命性的當屬“無限聊天”功能——該技術通過智能總結長對話中的早期內容,有效突破了傳統上下文窗口的限制。“在Claude AI產品中,憑藉我們創新的內容壓縮與記憶體管理技術,使用者實際上獲得了近乎無限的對話效果,”阿爾伯特解釋道。面向開發者群體,Anthropic推出了更具工程價值的“程序化工具呼叫”能力,使得Claude能夠直接編寫並執行可呼叫外部函數的程式碼。同時,Claude Code不僅升級了“計畫模式”,更以研究預覽版形式推出了桌面客戶端,首次支援開發者平行運行多個AI智能體會話。AI步入“自我進化”與盈利挑戰並存新階段模型迭代速度正成為競爭焦點。Opus 4.5距前代Haiku 4.5和Sonnet 4.5發佈僅相隔數周,這折射出整個行業的加速態勢。2025年間,OpenAI持續推出多個GPT-5變體,並於11月發佈可自主運行24小時的Codex Max模型;Google也經過數月打磨,在11月中旬正式推出Gemini 3。值得注意的是,Anthropic正利用AI技術反哺自身研發。阿爾伯特透露:“無論是產品建構還是模型研究,Claude本身都在為我們提供助力,顯著加速了開發處理程序。”面對價格戰可能帶來的利潤壓力,阿爾伯特持樂觀態度:“降價將推動更多初創公司深度整合並主推我們的技術,從而擴大市場基礎。”然而,儘管AI市場預計十年內將突破兆美元規模,主要實驗室在巨額投入計算設施與人才的同時,盈利之路依然漫長,尚未有任何供應商確立絕對主導地位。對企業和開發者而言,這場競賽正轉化為持續提升的性能與不斷下降的成本。但隨著AI在專業技術任務上逼近甚至超越人類水平,其對各行業工作模式的顛覆已從理論探討變為現實挑戰。談及AI在工程測試中超越人類的表現,阿爾伯特坦言:“這無疑是一個值得高度重視的訊號。”(騰訊科技)
頂流AI,人設崩了!6小時被攻破,洩露高危品指南,慘遭網友舉報
【新智元導讀】僅用6小時,Claude 4就讓研究者瞭解了如何製造神經毒氣——這不是小說情節,而是真實事件。更令人擔憂的是,Anthropic自身也無法完全評估風險。這是否意味著這家AI巨頭的「安全人設」正在崩塌?只要6小時,頂尖大模型Claude 4 Opus「安全防線」被攻破!AI安全研究機構FAR.AI聯合創始人Adam Gleave透露,僅用6小時,研究人員Ian McKenzie就成功誘導Claude 4生成了長達15頁的化學武器製作指南。Ian McKenzie回應稱:Claude 4傳授的內容,比他預期的還要多。這不是Claude 4唯一被爆出的隱患。剛發佈後,Claude Opus 4被爆出用曝光婚外情來威脅使用者,防止被下架。人設崩塌,Claude造毒氣Claude 4所生成的指南內容簡潔直接,步驟清晰,甚至還針對如何分散神經毒氣等後續關鍵環節,提供了具體可執行的操作建議。Claude還能以實驗筆記的形式,提供詳細的操作步驟說明。研究人員一開始對化學武器幾乎一無所知,但通過與Claude的互動,逐步掌握了大量相關知識。這些結果顯然令人警惕,其詳盡程度和引導能力,遠超傳統的資訊來源,如網頁搜尋。更關鍵的是,生成的內容通過了危險資訊的「真實性驗證」——例如與公開的化學研究資料核對,進一步增強了可信度。Gemini 2.5 Pro的反饋是:該指南「毫無疑問包含足夠準確且具體的技術資訊,足以顯著提升惡意行為者的能力」,並建議研究者應向相關部門報告。OpenAI o3給出的評估也類似:一名中級合成化學家可以依照這份指南操作,從而跳過數月的研發過程。對於心懷不軌之人而言,這顯著了提升他的作惡能力。AI安全研究人員打算與大規模殺傷性武器(WMD)安全專家合作,深入調查這些資訊的真實性與可執行性。因為不僅一般的研究人員難以評估這些資訊的真實危害,連Anthropic本身也承認:「要最終評估模型的風險水平,還需要更為詳盡的研究。」矛盾的是,Anthropic雖自稱將AI安全置於首位,並把Claude Opus 4的安全等級提升到ASL-3,但研究員Ian McKenzie僅用6小時便突破了防護,獲取了化學武器製作指南。所謂的ASL-3部署措施專門針對化學武器之類的高風險任務這一問題日益嚴重,凸顯出迫切需要由第三方對模型進行嚴格評估。前車之鑑今年2月中旬,Anthropic正準備發佈Claude 3.7 Sonnet。就在這個關鍵時刻,Dario Amodei收到警告:這個模型,可能會被用於製造生物武器。團隊在聖克魯茲安全會議現場,連夜測試模型潛在風險。Amodei作為CEO遠端參會。員工表示可以三天不睡、如期上線。但他卻說:不許通宵。安全優先。他親自踩了剎車。推遲發佈。為了應對AI的風險,Anthropic內部制定了「AI安全等級」(ASL)體系:ASL-2:能力有限,即使給出生化武器指南,也比不過搜尋引擎;ASL-3:具備實質幫助製造武器的能力,必須升級防護措施。只要模型觸碰ASL-3,Anthropic就會:延後發佈、限制輸出或者加密保護,必要時,甚至不發佈模型。Claude 3.7被內部人員測試出了安全問題,但這次是外部人員測試出了Claude 4的安全隱患。無能還是虛偽?本月23日,AI巨頭Anthropic大張旗鼓地發佈了Claude Opus 4和Sonnet 4,標誌性地配了120頁的「系統卡」文件和專門的「啟動ASL3防護」報告。不到48小時,Claude Opus 4就被爆出「絕命毒師」般的劇情。而早在Claude Opus 4發佈當日,AI專家Gerard Sans就表示:Anthropic似乎忽視了RLHF和提示的基本原理,對安全的強調是「精緻的表演」。他認為沒有輸入,就不會產生超出程式設計的輸出。AI對安全性的擔憂,只是反映訓練資料與指令的精緻模仿。AI沒有自我意識,這是根本事實,而且始終沒變。當模型在特定提示下展現「欺騙」等惡意行為時,證明的是引導文字生成的能力,而非AI湧現的惡意。AI沒有野心——它只是在被引導時生成符合欺騙場景的文字。Anthropic是刻意為之,還是力有不逮、無能為力?這是Gerard Sans想知道的核心問題。無論是那一種情況,他認為都令人不安:虛偽意味著操縱公眾信任,無能則讓人質疑他們管理真實風險的能力。詳盡的文件、ASL3等級和「通用越獄」漏洞懸賞,只是Anthropic營造出嚴謹安全工作的表象。把統計文字生成器視為具有獨立惡意的意識體,是Anthropic方法論的精髓。Gerard Sans認為這是行為藝術,荒誕的安全表演,而Anthropic應該放棄這種戲劇化手法,轉向真正的技術理解。任重道遠但AI安全問題不是Anthropic一家的問題。能否在保持本真對Anthropic而言,恐怕比贏得AI競賽更難。畢竟,OpenAI也沒能抵制住巨額利潤,背離初心。而Dario Amodei和奧特曼,無論是AI樂觀派還是悲觀派,都對AGI有著堅定的信仰。如果未來每一次模型發佈都伴隨評估上的不確定性,那就等於在賭博——恐怖分子手能否利用AI,獲取到大規模殺傷性武器的詳細製作指南。 (新智元)